Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of (1/1 !(n-1) !)+(1/3 !(n-3))+(1/5 !(n-5) !)+ ldots ldots .. is
Q. The value of
1
!
(
n
−
1
)!
1
+
3
!
(
n
−
3
)
1
+
5
!
(
n
−
5
)!
1
+
……
.
. is
479
171
Binomial Theorem
Report Error
A
(
n
−
1
)!
2
n
B
n
!
2
n
C
(
n
−
1
)!
2
n
−
1
D
n
!
2
n
−
1
Solution:
Let
S
=
1
!
(
n
−
1
)!
1
+
3
!
(
n
−
3
)
1
+
5
!
(
n
−
5
)!
1
+
……
=
n
!
1
(
1
!
(
n
−
1
)!
n
!
+
3
!
(
n
−
3
)!
n
!
+
5
!
(
n
−
5
)!
1
+
…
..
)
=
n
!
1
(
n
C
1
+
n
C
3
+
n
C
5
+
……
)
=
n
!
1
⋅
2
2
n
⇒
n
!
2
n
−
1