A vector with initial point (x1,y1,z1) and terminal point (x2,y2,z2) is given by (x2−x1)i^+(y2−y1)j^+(z2−z1)k^
The given points are P(1,2,3) and Q(4,5,6). ∴x1=1,y1=2,z1=3 and x2=4,y2=5,z2=6
So, vector PQ=(x2−x1)i^+(y2−y1)j^+(z2−z1)k^ =(4−1)i^+(5−2)j^+(6−3)k^=3i^+3j^+3k^ ∴ Magnitude of given vector ∣PQ∣=32+32+32=9+9+9=27=33
Hence, the unit vector in the direction of PQ, ∣PQ∣PQ=333i^+3j^+3k^=333(i^+j^+k^) =31i^+31j^+31k^