Given curves y=3x ...(i)
and y−5x ...(ii)
Intersect at the point (0,1).
Now, differentiating Eqs. (i) and (ii) w.r.t. x, we get dxdy=3xlog3 and dxdy=5xlog5 ⇒(dxdy)(0,1)=log3 and (dxdy)(0,1)=log5 ⇒m1=log3 and m2=log5
Angle between these curves is given by tanθ=1+m1m2m1−m2 ⇒tanθ=1+log3⋅log5log3−log5 ⇒θ=tan−1(1+log3log5log3−log5)