Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
Q. The two curves
x
3
−
3
x
y
2
+
5
=
0
and
3
x
2
y
−
y
3
−
7
=
0
2580
201
Application of Derivatives
Report Error
A
cut at right angles
71%
B
touch each other
16%
C
cut at an angle
π
/4
8%
D
cut at an angle
π
/3
5%
Solution:
Differentiating
x
3
−
3
x
y
2
+
5
=
0
, we get
3
x
2
−
3
y
2
−
6
x
y
d
x
d
y
=
0
⇒
d
x
d
y
=
2
x
y
x
2
−
y
2
Differentiating
3
x
2
y
−
y
3
−
7
−
0
, we get
6
x
y
+
3
x
2
d
x
d
y
−
3
y
2
d
x
d
y
=
0
⇒
d
x
d
y
=
y
2
−
x
2
2
x
y
Since, product of slopes is
2
x
y
x
2
−
y
2
×
y
2
−
x
2
2
x
y
=
−
1
∴
The two curves cut at right angle.