Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The two curves $x^3 - 3xy^2 + 5 = 0$ and $3x^2y - y^3 - 7 = 0$

Application of Derivatives

Solution:

Differentiating $x^3 - 3xy^2 + 5 = 0$, we get
$3x^{2} - 3y^{2} -6xy \frac{dy}{dx} = 0$
$\Rightarrow \frac{dy}{dx} = \frac{x^{2}-y^{2}}{2xy}$
Differentiating $3x^{2}y - y^{3} - 7 - 0$, we get
$6xy + 3x^{2} \frac{dy}{dx} - 3y^{2}\frac{dy}{dx} = 0$
$\Rightarrow \frac{dy}{dx} = \frac{2xy}{y^{2} - x^{2}}$
Since, product of slopes is $\frac{x^{2}-y^{2}}{2xy} \times \frac{2xy}{y^{2} - x^{2}} = -1$
$\therefore $ The two curves cut at right angle.