x3−3xy2+2=0 ⇒3x2−3y2−6xydxdy=0 ⇒dxdy=6xy3(x2−y2)=2xyx2−y2
Again 3x2y−y2−2=0 ⇒3x2dxdy+6xy−3y2dxdy=0 ⇒3(x2−y2)dxdy=−6xy ⇒dxdy=−x2−y22xy Let (x1,y1) be the point of intersection of two curves. ∴ product of slopes of tangents at (x1,y1) =2x1y1x12−y12⋅x12−y12−2x1y1=−1 ∴ curves cut at right angles.