h=rsinθ+r
base =BC=2rcosθ θ∈[0,2π)
Area of ΔABC=21(BC)⋅h Δ=21(2rcosθ)⋅(rsinθ+r) =r2(cosθ)⋅(1+sinθ) dθdΔ=r2[cos2θ−sinθ−sin2θ] =r2[1−sinθ−2sin2θ] =positive r2[1+sinθ][1−2sinθ]=0 ⇒θ=6π ⇒Δ is maximum where θ=6π Δmax=433r2= area of equilateral Δ with BC=3r