Let g(x)=0∫x1+t4t2dt−(2x)+1
Let I(x)=0∫x1+t4t2dt =210∫x1+t42t2dt =210∫x(1+t4t2+1+1+t4t2−1)dt =210∫x(t−t1)2+21+t21dt+210∫x(t+t1)2−2(1−t21)dt I(x)=2121[tan−1(2t−t1)]0x+21×221[ℓn∣∣t+t1+2t+t1−2∣∣]0x
Now, g′(x)=1+x4x2−2 g′(x)=x21+x21−2
since x21+x2≥2 ∴g′(x)<0
So x2+x211≤21
Now, g(0)=1 &g(1)=0∫11+t4t2dt−2+1 =0∫11+t4t2dt−1 =[0+421ℓn(2+22−2)]−[221(−2π)+421ℓn(11)]−1 =421ℓn(2+22−2)+42π−1 g(1)=−ve ∴g(0)>0=&g(1)<0 &g′(x)<0 ∴g(x) has one root in [0,1]