[(t−1−1)x+(t−1+1)−1x−1]8=[(t1−1)x+(t1+1)−1x1]8
Let Tr+1 be the term independent of x, then Tr+1=8Cr(t1−1)8−rx8−r⋅(t1+1)−r(x1)r=8Cr(t1−1)8−r⋅(t1+1)−r⋅x8−2r∴8−2r=0⇒r=4 ∴T5 is the term independent of x and T5=8C4(t1−1)4⋅(t1+1)−4=8C4(t1−t)4⋅(t1+t)−4=8C4(1+t1−t)4=4.3⋅2.18.7⋅6.5(1+t1−t)4=70⋅(1+t1−t)4