General term of (2x2−x1)8 is 8Cr(2x2)8−r(x−1)r ∴ Given expression is equal to (1−x1+3x5)8Cr(2x2)8−r(−x1)r =8Cr(2x2)8−r(−x1)r−x18Cr(2x2)8−r(−x1)r +3x5.8Cr(2x2)8−r(−x1)r<br/><br/>=8Cr28−r(−1)rx16−3r−8Cr28−r(−1)rx15−3r +3.8Cr2(8−r)(−x1)r(−1)rx21−3r
For the term independent of x, we should have 16−3r=0,15−3r=0,21−3r=0
From the simplification we get r=5 and r=7 ∴−8C5(23)(−1)5−3.8C7.2+[5!3!8!×8]−3×[7!4!8!×2] =(56×8)−48 =448−6×8=448−48=400