Let circle, C1=x2+y2−4x−8y+7=0
Centre (2,4)
Radius r=13
Circle C2=x2+y2+4x+6y=0
Centre: (−2,−3)
Radius r=13
Radius of circle C1 and C2 are equal coordinate of B is mid-point of centre of circle C1 and C2. ∵B(0,21). A=−1,2
Trisection of AB is x=2+12(0)+(1)(−1)=−31 y=2+l2(21)+2(l)=33=1 ∴ Coordinates are (−31,1).