Given system of equation is 3x+2y+z=6 3x+4y+3z=14 6x+10y+8z=a
Here, A=⎣⎡3362410138⎦⎤,B=⎣⎡614a⎦⎤ C11=(32−30)=2,C12=−(24−18)=−6, C13=(30−24)=6 C21=−(16−10)=−6,C22=(24−6)=18, C23=−(30−12)=−18 C31=(6−4)=2,C32=−(9−3)=−6, C33=(12−6)=6 adjA=⎣⎡C11C21C31C12C22C32C13C23C33⎦⎤′=⎣⎡2−62−618−66−186⎦⎤′ =⎣⎡2−66−618−182−66⎦⎤
So, (adj A) B=⎣⎡2−66−618−182−66⎦⎤⎣⎡614a⎦⎤ =⎣⎡12−84+2a−36+252−6a36−252+6a⎦⎤=⎣⎡−72+2a216−6a−216+6a⎦⎤
and ∣A∣=∣∣3362410138∣∣ =3(32−30)−2(24−18)+1(30−24) =3(2)−2(6)+6=6−12+6=0
We know that, if ∣A∣=0 and (adjA)⋅B=0, then the system of equations is consistent and has an infinite number of solutions. (adjA)⋅B=0 ⇒⎣⎡−72+2a216+6a−216+6a⎦⎤=⎣⎡000⎦⎤
On comparing, we get 2a−72=0 ∴a=36