Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum to infinity of the series 1+2(1-(1/n)) +3( 1-(1/n))2 + ..... where n ∈ N, is given by
Q. The sum to infinity of the series
1
+
2
(
1
−
n
1
)
+
3
(
1
−
n
1
)
2
+
.....
where
n
∈
N
, is given by
1320
223
Sequences and Series
Report Error
A
n
(
n
−
1
)
14%
B
n
(
1
−
n
1
)
2
32%
C
n
2
50%
D
(
n
n
−
1
)
2
5%
Solution:
Let
S
=
1
+
2
(
1
−
n
1
)
+
3
(
1
−
n
1
)
2
+
.....
...
(
i
)
∴
(
1
−
n
1
)
S
=
(
1
−
n
1
)
+
2
(
1
−
n
1
)
2
+
.....
...
(
ii
)
(
i
)
−
(
ii
)
gives
n
S
=
1
+
(
1
−
n
1
)
+
(
1
−
n
1
)
2
+
.....∞
=
1
−
(
1
−
n
1
)
1
=
n
⇒
S
=
n
2