Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum to infinite terms sin(π/3) + (1/2) sin (2π/3) + (1/3) sin(3π/4) + (1/4) sin(4π/3) + ....+ ∞ equals,
Q. The sum to infinite terms
s
in
3
π
+
2
1
s
in
3
2
π
+
3
1
s
in
4
3
π
+
4
1
s
in
3
4
π
+
....
+
∞
equals,
1296
195
Complex Numbers and Quadratic Equations
Report Error
A
4
π
B
3
π
C
2
π
D
0
Solution:
Let
S
=
s
in
3
π
+
2
1
s
in
3
2
π
+
3
1
s
in
3
3
π
+
4
1
s
in
3
4
π
+
...∞
and
C
=
cos
3
π
+
2
1
cos
3
2
π
+
3
1
cos
3
3
π
+
4
1
cos
3
4
π
+
...∞
∴
C
+
i
S
=
(
cos
3
π
+
i
s
in
3
π
)
+
2
1
(
cos
3
2
π
+
i
s
in
3
2
π
)
+
3
1
(
cos
3
3
π
+
i
s
in
3
3
π
)
+
...∞
=
e
i
3
π
+
2
1
e
i
3
2
π
+
3
1
e
i
3
3
π
+
...∞
(
∵
cos
θ
+
i
s
in
θ
=
e
i
θ
)
=
e
i
3
π
+
2
1
(
e
(
i
3
π
)
)
2
+
3
1
(
e
i
3
π
)
3
+
...∞
=
y
+
2
1
y
2
+
3
1
y
3
+
...∞
(say
y
=
e
i
3
π
)
=
−
l
o
g
(
1
−
y
)
(
∵
α
+
2
α
2
+
3
α
3
+
...∞
=
−
l
o
g
(
1
−
α
)
)
=
−
l
o
g
(
1
−
e
i
3
π
)
=
−
l
o
g
(
1
−
cos
3
π
−
i
s
in
3
π
)
=
−
l
o
g
[
(
1
−
2
1
)
−
i
2
3
]
=
−
l
o
g
(
2
1
−
i
2
3
)
=
−
l
o
g
z
(say
z
=
2
1
−
i
2
3
)
=
−
[
l
o
g
∣
z
∣
+
i
a
r
g
z
]
,
where
∣
z
∣
=
(
2
1
)
2
+
(
2
3
)
2
=
1
=
−
[
l
o
g
1
+
i
t
a
n
1
(
R
e
z
I
m
(
z
)
)
]
=
0
−
i
t
a
n
−
1
(
1/2
−
3
/2
)
=
−
i
t
a
n
−
1
(
−
3
)
=
i
t
a
n
−
1
(
t
an
3
π
)
∴
C
+
i
S
=
i
3
π
∴
S
=
3
π