Let l+1/50=x . Let S be the sum of 50 terms of the given series. Then, S=1+2x+3x2+4x3+...+49x48+5Ox49...(1) (1−x)S=1+x+x2+x3+...+x49−50x50xS=x+2x2+3x3+.....+49x49+50x50
[Subtracting (2) from (1)] ⇒S(1−x)=1−x1−x50−50x50 ⇒S(−1/50)=−50(1−x50)−50x50 ⇒501S=50 ⇒S=2500