Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of two vectors veca and vecb is a vector vecc, such that | veca|=| vecb|=| vecc|=2. Then, the magnitude of veca - vec b is equal to
Q. The sum of two vectors
a
and
b
is a vector
c
, such that
∣
a
∣
=
∣
b
∣
=
∣
c
∣
=
2.
Then, the magnitude of
a
−
b
is equal to
3719
189
J & K CET
J & K CET 2011
Vector Algebra
Report Error
A
3
10%
B
2
10%
C
2
3
55%
D
0
26%
Solution:
Given,
(
a
+
b
)
=
c
Squaring on both sides,
(
a
+
b
)
2
=
c
2
⇒
(
a
+
b
)
.
(
a
+
b
)
−
∣
c
∣
2
⇒
∣
a
∣
2
+
∣
b
∣
2
+
2
a
.
b
=
∣
c
∣
2
⇒
4
+
4
+
2
a
.
b
=
4
(
∵
∣
a
∣
=
∣
b
∣
=
∣
c
∣
=
2
g
i
v
e
n
)
⇒
a
.
b
=
−
2
..(i)
Now, we have
∣
a
+
b
∣
2
=
∣
a
∣
2
+
∣
b
∣
2
−
2
a
.
b
=
4
+
4
−
2
(
−
2
)
[from Eq. (i)]
⇒
∣
a
−
b
∣
=
2
3
∴
Magnitude of
(
a
−
b
)
=
2
3