Let a matrix =⎣⎡211232112⎦⎤−x⎣⎡100010001⎦⎤=⎣⎡2−x1123−x2112−x⎦⎤ ∵ Matrix A is a singular. ∴∣A∣=0⇒∣∣2−x1123−x2112−x∣∣=0
On applying C1→C1+C2+C3, we get ∣∣5−x5−x5−x23−x2112−x∣∣=0 ⇒(5−x)∣∣11123−x2112−x∣∣=0
On applying R2→R2−1 and R3→R3−R1, we get (5−x)∣∣10021−x0101−x∣∣=0 ⇒(5−x)(1−x)2=0 ⇒x=1,1,5
So, sum of the required values of x is 7 .