The sum of the series 1.3.5+3.5.7+5.7.9+ up to n terms here Tn=(2n−1)(2n+1)(2n+3) Tn=8n3+12n2−2n−3 Sn=8∑n3+12∑n2−2∑n−3n =8[2n(n+1)]2+612n(n+1)(2n+1)−22n(n+1)−3n =2n2(n+1)2+2n(n+1)(2n+1)−n(n+1)−3n =n(n+1)[2n(n+1)+2(2n+1)−1]−3n =n(n+1)[2n2+6n+1]−3n =2n4+8n3+7n2−2n =n(2n3+8n2+7n−2)