Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of the series displaystyle∑r = 0n(-1)r nCr((1/2r)+(3r/22r)+(7r/23r)+(15r/24r)+...m textterms) is
Q. The sum of the series
r
=
0
∑
n
(
−
1
)
r
n
C
r
(
2
r
1
+
2
2
r
3
r
+
2
3
r
7
r
+
2
4
r
1
5
r
+
...
m
terms
)
is
3052
179
VITEEE
VITEEE 2013
Report Error
A
2
mn
(
2
n
−
1
)
2
mn
−
1
B
2
n
−
1
2
mn
−
1
C
2
n
+
1
2
mn
+
1
D
None of these
Solution:
r
=
0
∑
n
(
−
1
)
r
⋅
n
C
r
(
2
r
1
+
2
2
r
3
r
+
2
3
r
7
r
+
…
upto
m
terms
)
=
r
=
0
∑
n
(
−
1
)
r
⋅
n
C
r
2
r
1
+
r
=
0
∑
n
(
−
1
)
r
⋅
n
C
r
⋅
2
2
r
3
r
+
r
=
0
∑
n
(
−
1
)
r
⋅
n
C
r
⋅
2
3
r
7
r
+
…
=
(
1
−
2
1
)
n
+
(
1
−
4
3
)
n
+
(
1
−
8
7
)
n
+
upto
m
terms
=
2
n
1
+
4
n
1
+
8
n
1
+
…
upto
m
terms
=
(
1
−
2
n
1
)
2
n
1
(
1
−
2
mn
1
)
=
2
mn
(
2
n
−
1
)
2
mn
−
1