We have, r=0∑1020Cr=20C0+20C1+…+20C10
But 20C0+20C1+…20C20=220
and ∵20C20=20C0,20C19=20C1 20C18=20C2,20C11=20C9 ∴r=0∑1020Cr=(20C0+20C1+…+20C20) −(20C11+20C12+…+20C20) =220+20C10−(20C10+20C9+…+20C0) ⇒2(20C0+20C1+…+20C10)=220+20C10 ∴20C0+20C1+…+20C10=219+2120C10