r=0∑1020Cr=20C0+20C1+...........+20C10
But 20C0+20C1+...........+20C20=220
and ∵20C20=20C0,20C10=20C1,20C18=20C2 and so on 20C11=20C9 ∴20C0+20C1+.....+20C10 =(20C11+20C12+.....+20C20) −(20C11+20C12+.....+20C20) =220+20C10−(20C10+20C9+.....+20C0) ∴2[20C0+20C1+.....+20C10]=220+20C10 ∴20C0+20C1+.....+20C10=219+2120C10