Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of the series (3/1 !+2 !+3 !)+(4/2 !+3 !+4 !)+(5/3 !+4 !+5 !)+ ldots ldots ldots+(2008/(2006) !+(2007) !+(2008) !) is equal to
Q. The sum of the series
1
!
+
2
!
+
3
!
3
+
2
!
+
3
!
+
4
!
4
+
3
!
+
4
!
+
5
!
5
+
………
+
(
2006
)!
+
(
2007
)!
+
(
2008
)!
2008
is equal to
662
122
Binomial Theorem
Report Error
A
2
⋅
(
2008
)!
(
2008
)!
+
2
B
2
⋅
(
2008
)!
(
2008
)!
+
1
C
2
⋅
(
2008
)!
(
2008
)!
−
2
D
2
⋅
(
2008
)!
(
2008
)!
−
3
Solution:
T
n
=
(
n
−
2
)!
+
(
n
−
1
)!
+
n
!
n
=
(
n
−
2
)!
⋅
[
1
+
n
−
1
+
n
(
n
−
1
)]
n
=
(
n
−
2
)!
⋅
n
2
n
=
(
n
−
2
)!
⋅
n
1
=
(
n
−
1
)!
⋅
n
n
−
1
=
(
n
−
1
)!
1
[
1
−
n
1
]
=
(
n
−
1
)!
1
−
n
!
1
nence
sum
=
n
=
3
∑
2008
(
(
n
−
1
)!
1
−
n
!
1
)
sum
=
2
!
1
−
3
!
1
+
3
!
1
−
1/4
!
+
1/4
!
−
1/5
!
⋯⋯⋯
+
(
2007
)!
1
−
(
2008
)!
1
=
2
!
1
−
(
2008
)!
1
=
2
⋅
(
2008
)!
(
2008
)!
−
2