The given series can be written as 13+1+313+23+1+3+513+23+33+... tn=1+3+5+...+(2n−1)13+23+33+....+n3
or tn=4⋅n2n2(n+1)2=4(n+1)2=41(n2+2n+1) ∴Sn=41[k=1∑nk2+2k=1∑nk+n] =41[6n(n+1)(2n+1)+22n(n+1)+n] ∴S16=41[616⋅17⋅33+16⋅17+16] =41[1496+272+16]=41[1784]=446