Let S=(1−2)+(3−4)+(5−6)+...+(999−1,000)+1001 =−500times(1+1+...+1)+1001=1001−500=501 Alternative Solution : S=(1+3+5+...+1001)−(2+4+6+...+1000)
= (first 501 odd natural numbers) - 2(sum of first 500 natural numbers) =(501)2−500×501 =(501)[501−500]=501 Short Cut Method : 1−2+3−4+...=−2N if N is even =2N+1 if N is odd ∴ Required sum =21001+1=21002=501