Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of the series 12+(12+22)+(12+22+32) to n terms = ...
Q. The sum of the series
1
2
+
(
1
2
+
2
2
)
+
(
1
2
+
2
2
+
3
2
)
to
n
terms = ...
2100
204
Sequences and Series
Report Error
A
12
n
(
n
+
1
)
2
(
n
+
2
)
54%
B
12
n
(
n
+
1
)
2
(
n
+
3
)
19%
C
12
n
(
n
+
2
)
2
(
n
+
1
)
19%
D
14
n
(
n
+
2
)
2
(
n
+
1
)
9%
Solution:
T
n
=
(
1
2
+
2
2
+
3
2
+
...
+
n
2
)
=
6
n
(
n
+
1
)
(
2
n
+
1
)
=
6
1
[
2
n
3
+
3
n
2
+
n
]
∴
S
n
=
k
=
1
∑
n
T
k
=
6
1
[
2
k
=
1
∑
n
k
3
+
3
k
=
1
∑
n
k
2
+
k
=
1
∑
n
k
]
=
6
1
[
2
{
2
n
(
n
+
1
)
2
}
2
+
6
3
n
(
n
+
1
)
(
2
n
+
1
)
+
2
n
(
n
+
1
)
]
=
6
1
[
2
n
2
(
n
+
1
)
2
+
2
n
(
n
+
1
)
(
2
n
+
1
)
+
2
n
(
n
+
1
)
]
=
12
n
(
n
+
1
)
[
1
n
(
n
+
1
)
+
2
n
+
1
+
1
]
=
12
n
(
n
+
1
)
2
(
n
+
2
)