Let S=1.212+2.312+22+3.412+22+32+... upto 20 terms
Let tn be nth term of series then tn=n⋅(n+1)12+22+3+....+n2 =n(n+1)∑n2=6⋅n(n+1)n(n+1)(2n+1)=62n+1
Taking summation on both sides n=1∑20tn=62n=1∑20n+61n=1∑201 =31×(220(20+1))+61×20 =31×(220×21)+(310)) =3210+310=3220