Given, 2(cos−1x)2−πcos−1x+4π2
Let cos−1x=y ∴2y2−πy+4π2=2[y2−2πy]+4π2 =2[(y−4π)2−16π2]+4π2=2(y−4π)2+8π2 =2(cos−1x−4π)2+8π2
We know that 0≤cos−1x≤π⇒−4π≤cos−1x−4π≤43π 0≤(cos−1x−4π)2≤169π2 0≤2(cos−1x−4π)2≤89π2 8π2≤2(cos−1x−4π)2+8π2≤54π2 ∴ Required sum =8π2+45π2=811π2