Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of the infinite series sin-1(1/√2)+ sin-1((√2-1/√6))+ sin-1((√3-√2/√12))+...+ sin-1((√ n-√n-1/√n(n+1))) is
Q. The sum of the infinite series
sin
−
1
2
1
+
sin
−
1
(
6
2
−
1
)
+
sin
−
1
(
12
3
−
2
)
+
...
+
sin
−
1
(
n
(
n
+
1
)
n
−
n
−
1
)
is
3918
212
Inverse Trigonometric Functions
Report Error
A
4
π
38%
B
3
π
25%
C
2
π
12%
D
π
25%
Solution:
S
=
s
i
n
−
1
2
1
+
s
i
n
−
1
6
2
−
1
+
s
i
n
−
1
12
3
−
2
+
.....
+
s
i
n
−
1
(
n
(
n
+
1
)
n
−
n
−
1
)
Now,
T
n
=
s
i
n
−
1
(
n
(
n
+
1
)
n
−
n
−
1
)
=
s
i
n
−
1
[
n
1
1
−
(
n
+
1
1
)
2
−
n
+
1
1
1
−
(
n
1
)
2
]
=
s
i
n
−
1
n
1
−
s
i
n
−
1
n
+
1
1
[
∵
s
i
n
−
1
x
−
s
i
n
−
1
y
=
s
i
n
−
1
(
x
1
−
y
2
−
y
1
−
x
2
)
]
∴
S
=
s
i
n
−
1
2
1
+
(
s
i
n
−
1
2
1
−
s
in
3
1
)
+
(
s
i
n
−
1
3
1
−
s
i
n
−
1
4
1
)
+
.....
+
∞
=
2
s
i
n
−
1
2
1
=
2
(
4
π
)
=
2
π