Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of the infinite series (1/2)((1/3)+(1/4))-(1/4)((1/32)+(1/42))+(1/6)((1/33)+(1/43))-... is equal to
Q. The sum of the infinite series
2
1
(
3
1
+
4
1
)
−
4
1
(
3
2
1
+
4
2
1
)
+
6
1
(
3
3
1
+
4
3
1
)
−
...
is equal to
2932
174
Sequences and Series
Report Error
A
2
1
l
o
g
2
25%
B
l
o
g
5
3
26%
C
l
o
g
3
5
22%
D
2
1
l
o
g
3
5
26%
Solution:
Consider
2
1
(
3
1
+
4
1
)
−
4
1
(
3
2
1
+
4
2
1
)
+
6
1
(
3
3
1
+
4
3
1
)
−
...
=
(
2
1
.
3
1
−
4
1
.
3
2
1
+
6
1
.
3
3
1
...
)
+
(
2
1
.
4
1
−
4
1
.
4
2
1
+
6
1
.
4
3
1
−
)
...
=
2
1
(
3
1
−
2
1
(
3
2
1
)
+
3
1
(
3
3
1
)
...
)
+
2
1
(
4
1
−
2
1
.
4
2
1
+
3
1
.
4
3
1
..
)
=
2
1
(
x
−
2
x
2
+
3
x
3
...
)
+
2
1
(
y
−
2
y
2
+
3
Y
3
)
where
x
=
3
1
,
y
=
4
1
=
2
1
l
o
g
(
1
+
x
)
+
2
1
l
o
g
(
1
+
y
)
=
2
1
l
o
g
(
1
+
3
1
)
+
2
1
l
o
g
(
1
+
4
1
)
=
2
1
l
o
g
3
5