Let the A.P. is a,a+d,a+2d,……
Given, sum of first four terms =56
i.e., T1+T2+T3+T4=56 ⇒a+a+d+a+2d+a+3d=56 ⇒4a+6d=56 ⇒4×11+6d=56(∵a=11) ⇒6d=56−44=12 ⇒d=612 ⇒d=2
If last term is Tn, then sum of last four terms =Tn+Tn−1+Tn−2+Tn−3=112 ∴a+(n−1)d+a+(n−1−1)d+a+(n−2−1)d +a+(n−3−1)d=112[∵Tn=a+(n−1)d] ⇒4a+d(n−1+n−2+n−3+n−4)=112 ⇒4×11+2[4n−10]=112(∵a=11,d=2) ⇒44+8n−20=112 →8n−112−44+20 ⇒8n=132−44 ⇒8n=88 ⇒n=888 =11
Hence, total numbers of terms in the sequence =11