Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of the first 10 terms of the series (7/22 52)+(13/52 82)+(19/82 112)+ ldots ldots ldots is ( m / n ) the find the value of (n-12 m) ?
Q. The sum of the first 10 terms of the series
2
2
5
2
7
+
5
2
8
2
13
+
8
2
1
1
2
19
+
………
is
n
m
the find the value of
(
n
−
12
m
)
?
1017
118
Sequences and Series
Report Error
Answer:
0004
Solution:
S
=
2
2
5
2
7
+
5
2
8
2
13
+
8
2
1
1
2
19
+
………
3
S
=
2
2
5
2
21
+
5
2
8
2
39
+
8
2
1
1
2
57
+
3
S
=
r
=
1
∑
10
(
3
r
−
1
)
2
(
3
r
+
2
)
2
(
3
r
+
2
)
2
−
(
3
r
−
1
)
2
3
S
=
r
=
1
∑
10
(
(
3
r
−
1
)
2
1
−
(
3
r
+
2
)
2
1
3
S
=
2
2
1
−
2
10
1
3
S
=
2
10
2
8
−
1
S
=
1024
85
=
n
m
.
Hence,
(
n
−
12
m
)
=
4