Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of the first 10 terms of the sequence 8,88,888,8888, ldots is
Q. The sum of the first 10 terms of the sequence
8
,
88
,
888
,
8888
,
…
is ____
23
141
Progressions
Report Error
A
9
8
[
9
1
(
1
0
10
−
1
)
]
B
9
8
[
9
10
(
1
0
10
−
10
)
]
C
9
8
[
(
1
0
10
−
1
)
−
10
]
D
9
8
[
9
10
(
1
0
10
−
1
)
−
9
]
Solution:
S
10
=
8
+
88
+
888
+
8888
+
…
10
terms
S
10
=
9
8
[
9
+
99
+
999
+
9999
+
…
10
terms
]
=
9
8
[(
10
−
1
)
+
(
100
−
1
)
+
(
1000
−
1
)
+
…
+
…
10
terms
]
=
9
8
[
1
0
1
+
1
0
2
+
1
0
3
+
…
(
10
terms
)
−
(
1
+
1
+
1
+
…
10
terms
)]
=
9
8
[
10
−
1
10
(
1
0
10
−
1
)
−
10
]
=
9
8
[
9
10
(
1
0
10
−
10
]