f(x)=⎩⎨⎧x2−4x−2,−x2+2x+2,∀x∈(−1,23−17)∀x∈(23−17,2) f′(x) when x∈(−1,23−17) f′(x)=2x−4=0→x=2 f′(x)=2(x−2)⇒f′(x) is always ↓ f(2)=2 f(−1)=3 f(23−17)=217−3 f′(x) when x∈(23−17,2) f′(x)=−2x+2 f′(x)=−2(x−1) f′(x)=0 when x=1 f(1)=3
absolute minimum value =217−3
absolute maximum value =3
Sum =217−3+3=217+3