Clearly, the given series is an arithmetic geometric series whose corresponding AP and GP are respectively, 1,4,7,10,… and 1,51,521,531,…
The nth term of AP=[1+(n−1)×3]=3n−2
The nth term of GP=[1×(51)n−1]=(51)n−1
So, the nth term of the given series is (3n−2)×5n−11=5n−13n−2
Let, Sn=1+54+527+5310+…+5n−23n−5+5n−13n−2...(i) 51Sn=51+524+537+…+5n−1(3n−5)+5n3n−2...(ii)
Subtracting (ii) from (i), we get Sn−51Sn=1+{53+523+533+…+5n−13}−5n(3n−2) ⇒54Sn=1+53(1−51){1−(51)n−1}−5n(3n−2) ⇒54Sn=1+53(54){1−5n−11}−5n(3n−2) ⇒54Sn=1+43(1−5n−11)−5n(3n−2) ⇒Sn=45+1615(1−5n−11)−4⋅5n−1(3n−2)