Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of displaystyle∑ r =0 n (-1) r ( n C r / r +2 C r ) is equal to
Q. The sum of
r
=
0
∑
n
(
−
1
)
r
r
+
2
C
r
n
C
r
is equal to
134
93
Binomial Theorem
Report Error
A
n
+
1
2
B
n
−
1
2
C
n
+
2
2
D
n
−
2
2
Solution:
r
=
0
∑
n
(
−
1
)
r
r
+
2
C
r
n
C
r
=
r
=
0
∑
n
(
−
1
)
r
(
n
−
r
)!
r
!
n
!
⋅
(
r
+
2
)!
r
!
⋅
2
!
=
2
r
=
0
∑
n
(
−
1
)
r
(
n
−
r
)!
(
r
+
2
)!
n
!
=
(
n
+
1
)
(
n
+
2
)
2
⋅
r
=
0
∑
n
(
−
1
)
r
(
n
+
2
)
−
(
r
+
2
)!
(
r
+
2
)!
(
n
+
2
)!
=
(
n
+
1
)
(
n
+
2
)
2
⋅
r
=
0
∑
n
(
−
1
)
r
⋅
n
+
2
C
r
+
2
=
(
n
+
1
)
(
n
+
2
)
2
⋅
(
n
+
2
C
2
−
n
+
2
C
3
+
n
+
2
C
4
−
n
+
2
C
5
−
n
+
2
C
n
+
2
)
add and subtract
n
+
2
C
0
−
n
+
2
C
1
=
(
n
+
1
)
(
n
+
2
)
2
⋅
{
(
n
+
2
C
0
−
n
+
2
C
1
+
n
+
2
C
2
−
n
+
2
C
3
+
n
+
2
C
4
−
n
+
2
C
5
−
n
+
2
C
n
+
2
)
−
(
n
+
2
C
0
−
n
+
2
C
1
)
}
=
(
n
+
1
)
(
n
+
2
)
2
(
0
−
(
1
−
(
n
+
2
)))
=
n
+
2
2