f(x)=x3−3x2−23f′′(2)x+f′′(1) f′(x)=3x2−6x−23f′′(2)…… (ii) f′′(x)=6x−6…… (iii)
Now is 3rd equation f′′(2)=12−6=6 f′′(11=0)
Use (ii) f′(x)=3x2−6x−23f′′(2) f′(x)=3x2−6x−23×6 f′(x)=3x2−6x−9 f′(x)=0 3x2−6x−9=0 ⇒x=−1&3
Use (iii) f′′(x)=6x−6 f′′(−1)=−12<0 maxima f′′(3)=12>0 minima.
Use (i) f(x)=x3−3x2−23f′′(2)x+f′′(1) f(x)=x3−3x2−23×68x+0 f(x)=x3−3x2−9x f(3)=27−27−9×3=−27