Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of all possible solution(s) of the equation ||x+2|-3|= operatornamesgn(1-|((x-2)(x2+10 x+24)/(x2+1)(x+4)(x2+4 x-12))|)is [Note: sgn (y) denotes the signum function of y.]
Q. The sum of all possible solution(s) of the equation ||
x
+
2∣
−
3∣
=
sgn
(
1
−
∣
∣
(
x
2
+
1
)
(
x
+
4
)
(
x
2
+
4
x
−
12
)
(
x
−
2
)
(
x
2
+
10
x
+
24
)
∣
∣
)
is
[Note : sgn (y) denotes the signum function of y.]
239
118
Relations and Functions - Part 2
Report Error
A
0
B
-8
C
-10
D
not applicable
Solution:
∣∣
x
+
2∣
−
3∣
=
sgn
(
1
−
∣
∣
(
x
2
+
1
)
(
x
+
4
)
(
x
+
6
)
(
x
−
2
)
(
x
−
2
)
(
x
+
6
)
(
x
+
4
)
∣
∣
)
∣∣
x
+
2∣
−
3∣
=
sgn
(
1
−
∣
∣
x
2
+
1
1
∣
∣
)
x
=
2
,
−
4
,
−
6
∣∣
x
+
2∣
−
3∣
=
1
⇒
∣
x
+
2∣
−
3
=
±
1
⇒
∣
x
+
2∣
=
4
,
2
⇒
x
+
2
=
±
4
,
±
2
⇒
x
=
2
,
−
4
,
0
−
6.