Q.
The sum of all possible real values of a so that range of function f(x)=4sin2x+4sinx+a2−3 is [0,9] ∀x∈R, is equal to
314
115
Relations and Functions - Part 2
Report Error
Solution:
We have, f(x)=4sin2x+4sinx+a2−3=(2sinx+1)2+(a2−4) for range to ∈[0,9] a2−4=0⇒a=2 or −2
Clearly, discriminant of f(x) must be equal to zero, so 16=16(a2−3) ⇒a2=4 so, a=±2
Hence, there are two values of a (i.e., a=−2,a=2 ) ⇒ Sum =2−2=0