Consider (b1+b2+b3+....+bn)2=b12+b22+.....+bn2+2∑i=jbibj
Taking b1,=1,b2=2,...,bn=n ∴(1+2+3+...+n)2=12+22+32+...+n2+2Σ
(Product of numbers taken two at a time) ∴∑taken two at a timeProduct of numbers =21(1+2+3+...+n)2−21n=1∑nn2 =2×4n2(n+1)2−2×6n(n+1)(2n+1)=24n(n2−1)(3n+2)