Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of absolute maximum and absolute minimum values of the function f(x)=|2 x2+3 x-2|+ sin x cos x in the interval [0,1] is :
Q. The sum of absolute maximum and absolute minimum values of the function
f
(
x
)
=
∣
∣
2
x
2
+
3
x
−
2
∣
∣
+
sin
x
cos
x
in the interval
[
0
,
1
]
is :
817
151
JEE Main
JEE Main 2022
Application of Derivatives
Report Error
A
3
+
2
s
i
n
(
1
)
c
o
s
2
(
1/2
)
0%
B
3
+
2
1
(
1
+
2
cos
(
1
))
sin
(
1
)
0%
C
5
+
2
1
(
sin
(
1
)
+
sin
(
2
))
100%
D
2
+
sin
(
2
1
)
cos
(
2
1
)
0%
Solution:
f
(
x
)
=
∣
∣
2
x
2
+
3
x
−
2
∣
∣
+
sin
x
cos
x
f
(
x
)
=
∣
(
2
x
−
1
)
(
x
+
2
)
∣
+
sin
x
cos
x
f
′
(
x
)
=
{
4
x
+
3
+
4
c
o
s
2
x
,
−
(
4
x
+
3
)
+
4
c
o
s
2
x
,
2
1
<
x
<
1
0
≤
x
<
2
1
For
0
≤
x
<
2
1
⇒
f
′
(
x
)
<
0
For
2
1
<
x
≤
1
⇒
f
′
(
x
)
>
0
f
(
x
)
local minima at
x
=
2
1
and
local maxima at
x
=
1
f
(
2
1
)
+
f
(
1
)
=
3
+
2
1
(
1
+
2
cos
1
)
sin
1