Q.
The sum of 50 terms of the series 3+7+13+21+31+43+..... is equal to S50 , then the value of 12500S50 is
1442
209
NTA AbhyasNTA Abhyas 2020Sequences and Series
Report Error
Answer: 3.54
Solution:
Let, S=3+7+13+21+31+43+.....+Tn S=3+7+13+21+31+.....+Tn−1+Tn
Subtracting both the equations, we get, 0=3+(4+6+8+10+........+(Tn−Tn−1)−Tn ⇒Tn=3+(4+6+8+10+........(n−1)terms)=3+2(n−1)[8+(n−2)2] =3+(n−1)(4+n−2) =3+(n−1)(n+2) =3+n2+n−2 =n2+n+1 Sn=ΣTn=Σn2+Σn+Σ1 =6n(n+1)(2n+1)+2n(n+1)+n
If n=50,S50=650×51×101+250×51+50 =25×17×101+25×51+50=44250