r=0∑n(r+1)Cr2 (1+x)n=C0+C1x+………..+Cnxn
Multiply by x & then differentiate (1+x)n+x.n(1+x)n−1=C0+2C1x+…………(n+1)Cnxn....(i) (x+1)n=C0xn+C1xn−1+…………+Cn……… (ii)
Multiply (i) & (ii) & equate the coefficient of xn on both side C02+2C12+……..+(n+1)Cn2=2nCn+n⋅2n−1Cn−1=2⋅2n−1Cn−1+n⋅2n−1Cn−1 =n!(n−1)!(n+2)(2n−1)!