Consider (1+x)n=C0+C1x+C2x2+C3x3+……....(1)
Integrating equation (1) w.r. to x, between limits 0 and x, we get 0∫x(C0+C1x+C2x2+……)dx=0∫x(1+x)ndx ⇒C0x+C12x2+C23x3+…..=n+1(1+x)n+1−1....(2)
Integrating equation (2), taking limits from −1 to 0 , we get −1∫0[C0x+C12x2+C23x3+…]dx=−1∫0n+1(1+x)n+1−1dx....(3) ⇒[2C0x2+2.3C1x3+3.4C2x4+….]−10=[(n+1)(n+2)(1+x)n+2−n+1x]−10 ⇒−[1.2C0−2.3C1+3.4C2−….. =(n+1)(n+2)1−n+11=−n+21 ∴1.2C0−2.3C1+3.4C2+….=n+21