Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum 1+ (13 +23/1+2) + (13+23+33/1+2+3) +.... + (13 +23+33 +....+153/1+2+3+...+15) - (1/2) (1+2+3+...+15)
Q. The sum
1
+
1
+
2
1
3
+
2
3
+
1
+
2
+
3
1
3
+
2
3
+
3
3
+
....
+
1
+
2
+
3
+
...
+
15
1
3
+
2
3
+
3
3
+
....
+
1
5
3
−
2
1
(
1
+
2
+
3
+
...
+
15
)
3826
205
JEE Main
JEE Main 2019
Sequences and Series
Report Error
A
1240
15%
B
1860
15%
C
660
15%
D
620
55%
Solution:
Sum
=
∑
n
=
1
15
1
+
2
+
...
+
n
1
3
+
2
3
+
...
n
3
−
2
1
.
2
15.16
=
∑
n
=
1
15
2
n
(
n
+
1
)
−
60
=
∑
n
=
1
15
6
n
(
n
+
1
)
(
n
+
2
−
(
n
−
1
)
)
−
60
=
6
15.16.17
−
60
=
620