The given hyperbola is 4x2−9y2=36 ⇒9x2−4y2=1
On comparing it with the standard hyperbola a2x2−b2y2=1
We get a2=9,b2=4
And for the line x+y=2p, ⇒y=−x+2p ,
which is of the form y=mx+c,
Hence, we have m=−1 and c=2p
If a line y=mx+c touches a hyperbola a2x2−b2y2=1, then c2=a2m2−b2 ⇒(2p)2=9(−1)2−4 ⇒2p2=5 .