Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution to the differential equation y log y+xy'=0, where y (1) = e, is
Q. The solution to the differential equation
y
l
o
g
y
+
x
y
′
=
0
, where
y
(
1
)
=
e
, is
1939
221
Differential Equations
Report Error
A
x
(
l
o
g
y
)
=
1
B
x
y
(
l
o
g
y
)
=
1
C
(
l
o
g
y
)
2
=
2
D
l
o
g
y
+
(
2
x
2
)
y
=
1
Solution:
x
d
x
d
y
+
y
(
l
o
g
y
)
=
0
or
∫
x
d
x
+
∫
y
(
l
o
g
y
)
d
y
=
c
or
l
o
g
x
+
l
o
g
(
l
o
g
y
)
=
l
o
g
c
or
x
l
o
g
y
=
c
y
(
1
)
=
e
⇒
c
=
1
Hence, the equation of the curve is
x
l
o
g
y
=
1