Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution set of (x2 - 3x + 4/ x + 1) > 1 , x ∈ R, is
Q. The solution set of
x
+
1
x
2
−
3
x
+
4
>
1
,
x
∈
R
, is
2713
191
Linear Inequalities
Report Error
A
(
3
,
+
∞
)
12%
B
(
−
1
,
1
)
∪
(
3
,
+
∞
)
60%
C
[
−
1
,
1
]
∪
[
3
,
+
∞
)
15%
D
none of theses
14%
Solution:
x
+
1
x
2
−
3
x
+
4
>
1
⇒
x
+
1
x
2
−
3
x
+
4
−
1
>
0
⇒
x
+
1
x
2
−
4
x
+
3
>
0
⇒
(
x
+
1
)
2
(
x
+
1
)
(
x
−
1
)
(
x
−
3
)
>
0
⇒
(
x
+
1
)
(
x
−
1
)
(
x
−
3
)
>
0
and
x
=
−
1
Using method of interval, we get,
x
∈
(
−
1
,
1
)
∪
(
3
,
∞
)