Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution set of the equation 4 x =x+[x], where x and [ x ] denote the fractional and integral parts of a real number 'x' respectively, is
Q. The solution set of the equation
4
{
x
}
=
x
+
[
x
]
, where
{
x
}
and
[
x
]
denote the fractional and integral parts of a real number
′
x
′
respectively, is
1425
236
Linear Inequalities
Report Error
A
{
0
}
0%
B
{
0
,
3
5
}
100%
C
[
0
,
∞
)
0%
D
None of these
0%
Solution:
Let
x
=
[
x
]
+
{
x
}
,
the equation becomes
4
{
x
}
=
[
x
]
+
{
x
}
+
[
x
]
⇒
3
{
x
}
=
2
[
x
]
⇒
{
x
}
=
3
2
[
x
]
…
(1)
∵
0
≤
{
x
}
<
1
⇒
0
≤
3
2
[
x
]
<
1
⇒
0
≤
[
x
]
<
2
3
and
[
x
]
in integer
∴
[
x
]
=
0
or 1, from (1)
{
x
}
=
0
or
3
2
∴
x
=
0
+
0
or
1
+
3
2
⇒
x
=
0
or
3
5
.
The solution set is
x
∈
{
0
,
3
5
}
.