∴[4(1−31+91−271+…)]log2x =[54(1+31+91+271+…)]logx2 ⇒[4(1+311)]log2x=[44(1−311)]logx2 ⇒[4(43)]log2x=[54×23]logx2 ⇒3log2x=(81)logx2 ⇒3log2x=34logx2 ⇒log2x=4logx2 ⇒log2x=log2x4 ⇒(log2x)2=4 ⇒log2x=±2
If log2x=+2
then x=22=4
and if log2x=−2,
then x=2−2=41 ∴ Solution set of the equation ={4,41}