Given equation can be rewritten as 3x2−7x−30=(x−5)+2x2−7x−5 On squaring both sides, we get 3x2−7x−30=x2+25−10x+(2x2−7x−5)+2(x−5)2x2−7x−5 ⇒10x−50=2(x−5)2x2−7x−5 ⇒(x−5)(5−2x2−7x−5)=0 ⇒ either x−5=0 or 5−2x2−7x−5=0 ⇒x=5 or 5=2x2−7x−5 ⇒x=5 or 2x2−7x−30=0 ⇒x=5 or x=−5/2,6 But x=−25 is not satisfied the given equation. Hence, required roots are {5,6} .